Q.P. Code: 16HS603

Reg. No:										
----------	--	--	--	--	--	--	--	--	--	--

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR

(AUTONOMOUS)

B. Tech I Year II Semester Supplementary Examinations Dec 2019 ENGINEERING PHYSICS

	ENGINEERING PHYSICS	
	(ECE, CSE & CSIT)	
Time:	3 hours Max. Marks: 60	
	(Answer all Five Units $5 \times 12 = 60$ Marks)	
	UNIT-I	
1	a Describe the important characteristic of laser beam?	4M
	b Explain the construction and working principle of He-Ne laser with suitable energy	8M
	level diagram.	
	OR	03.7
2	a What is the acceptance angle of an optical fibre and derive an expression for it.	8M
	b An optical fibre has a core refractive index of 1.44 and cladding refractive index of	4M
	1.40. Find its acceptance angle and numerical aperture.	
2	UNIT-II	03.4
3	a What are Miller indices? Mention the procedure to find Miller indices.	9M
	b Draw miller indices of planes (1 0 0), (1 0 1) and (0 1 1) OR	3M
4	a Define Reverberation and Reverberation time?	4M
-	b What are the basic requirements of acoustically good hall?	8M
	UNIT-III	01,1
5	a Derive Schrödinger's time dependent wave equation.	8M
	b Explain the physical significance of wave function.	4M
	OR	
6	a Explain the origin of energy bands in solids.	4M
	b Classify the solids into conductor, semiconductor and insulators based on band theory.	8M
	UNIT-IV	
7	a What are intrinsic and extrinsic semiconductors?	4M
	b Derive the expression for intrinsic carrier concentration.	8M
0	OR	73 4
8	a Explain B-H curve of ferromagnetic material. b Distinguish hard and soft magnetic materials	7M
	b Distinguish hard and soft magnetic materials. UNIT-V	5M
9	a Explain Meissner effect?	4M
9	b Distinguish Type-I and Type-II superconductors.	4M
	OR	OIVI
10	a What is nanomaterial? Write the classification of nanomaterials.	4M
	b Explain the basic principle of nanomaterials.	8M
	Lander Lander Lander Lander and Comments	

*** END ***